Subelliptic operators on Lie groups: Variable coefficients
DOI10.1007/BF00049421zbMath0842.43005OpenAlexW1994435896WikidataQ115395284 ScholiaQ115395284MaRDI QIDQ1906800
Derek W. Robinson, Ola Bratteli
Publication date: 4 August 1996
Published in: Acta Applicandae Mathematicae (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf00049421
Banach spacesgeneratorsLie algebraLie grouptranslationHaar measuresubelliptic differential operatorholomorphic semigroupsprincipal coefficients
Numerical computation of solutions to systems of equations (65H10) One-parameter semigroups and linear evolution equations (47D06) A priori estimates in context of PDEs (35B45) Representations of groups, semigroups, etc. (aspects of abstract harmonic analysis) (43A65) Nilpotent and solvable Lie groups (22E25) Representations of Lie and linear algebraic groups over real fields: analytic methods (22E45) Fourier and Fourier-Stieltjes transforms on nonabelian groups and on semigroups, etc. (43A30)
Related Items (4)
Cites Work
- Analytic vectors
- A non-inequality for differential operators in the \(L_ 1\) norm
- Opérateurs uniformément sous-elliptiques sur les groupes de Lie. (Uniformly sub-elliptic operators on Lie groups)
- Semigroups of linear operators and applications to partial differential equations
- Fundamental solutions and geometry of the sum of squares of vector fields
- Upper bounds for symmetric Markov transition functions
- A new proof of Moser's parabolic Harnack inequality using the old ideas of Nash
- Elliptic differential operators on Lie groups
- Representations of differential operators on a Lie group
- Hypoelliptic differential operators and nilpotent groups
- Subcoercive and subelliptic operators on Lie groups: Variable coefficients
- Subcoercivity and subelliptic operators on Lie groups. I: Free nilpotent groups
- A priori estimates for differential operators in \(L_ \infty\) norm
- Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérées
- Continuity of Solutions of Parabolic and Elliptic Equations
- Estimates on the Fundamental Solution to Heat Flows With Uniformly Elliptic Coefficients
- Heat Kernel Bounds for Second Order Elliptic Operators on Riemannian Manifolds
- Second-Order Elliptic Operators and Heat Kernels on Lie Groups
- L∞ -Contractivity of Semigroups Generated by Sectorial Forms
- Generation of Analytic Semigroups by Strongly Elliptic Operators
- Analysis on Lie groups
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Subelliptic operators on Lie groups: Variable coefficients