The arithmetic of the Chow group of zero-cycles
From MaRDI portal
Publication:1909864
DOI10.5802/jtnb.130zbMath0870.14002OpenAlexW2323873015MaRDI QIDQ1909864
Publication date: 24 March 1996
Published in: Journal de Théorie des Nombres de Bordeaux (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=JTNB_1995__7_1_51_0
Parametrization (Chow and Hilbert schemes) (14C05) Algebraic cycles (14C25) Brauer groups of schemes (14F22)
Related Items (26)
Local-global principle for 0-cycles on fibrations over rationally connected bases ⋮ Index of fibrations and Brauer classes that never obstruct the Hasse principle ⋮ A finer Tate duality theorem for local Galois symbols ⋮ Progress concerning the local-global principle for zero-cycles on algebraic varieties ⋮ Principe local-global pour les zéro-cycles sur certaines fibrations au-dessus de l'espace projectif ⋮ Approximation faible pour les 0-cycles sur un produit de variétés rationnellement connexes ⋮ Divisibility results for zero-cycles ⋮ Une liste de problèmes ⋮ Towards the Brauer-Manin obstruction on varieties fibred over the projective line ⋮ Compatibility of weak approximation for zero-cycles on products of varieties ⋮ A finiteness theorem for zero-cycles over \(p\)-adic fields ⋮ Brauer-Manin obstruction for zero-cycles on certain varieties ⋮ Weak approximation for 0-cycles on a product of elliptic curves ⋮ Zero cycles on fibrations over a curve of arbitrary genus ⋮ A local to global principle for higher zero-cycles ⋮ Degree and the Brauer-Manin obstruction ⋮ Odd order Brauer-Manin obstruction on diagonal quartic surfaces ⋮ Zéro-cycles sur les espaces homogènes et problème de Galois inverse ⋮ On the fibration method for zero-cycles and rational points ⋮ Principe local-global pour les zéro-cycles sur les surfaces réglées ⋮ A Tate duality theorem for local Galois symbols. II. The semi-abelian case ⋮ The Brauer–Manin pairing, class field theory, and motivic homology ⋮ On a filtration of for an abelian variety ⋮ Rigidity for relative 0-cycles ⋮ On Chow and Brauer groups of a product of Mumford curves ⋮ Applications of the fibration method to the Brauer–Manin obstruction to the existence of zero-cycles on certain varieties
Cites Work
- Hilbert's theorem 90 for \(K^ 2\), with application to the Chow groups of rational surfaces
- Some observations on motivic cohomology of arithmetic schemes
- Torsion dans le groupe de Chow de codimension deux
- La descente sur les variétés rationnelles. II. (The descent on rational varieties. II)
- On the Chow groups of certain rational surfaces: a sequel to a paper of S. Bloch
- Groupe de Chow de codimension deux des variétés définies sur un corps de nombres: Un théorème de finitude pour la torsion. (The codimension two Chow group of varieties defined over a number field: A finiteness theorem for the torsion)
- On the cycle map for torsion algebraic cycles of codimension two
- Cycles in a product of elliptic curves, and a group analogous to the class group
- Zero-cycles on rational surfaces over number fields
- Chow groups of zero cycles on pencils of quadrics
- Fibration method and Manin obstruction
- A finiteness theorem for the symmetric square of an elliptic curve
- Zero-cycles on quadric fibrations: Finiteness theorems and the cycle map
- Zero-cycles and cohomology on real algebraic varieties
- Duality theorems for curves over p-adic fields
- Torsion zero-cycles on the self-product of a modular elliptic curve
- On the Chow groups of certain rational surfaces
- Remarks on Correspondences and Algebraic Cycles
- $ K$-COHOMOLOGY OF SEVERI-BRAUER VARIETIES AND THE NORM RESIDUE HOMOMORPHISM
- Torsion algebraic cycles, K2, and Brauer groups of function fields
- Gersten's conjecture and the homology of schemes
- La $R$-équivalence sur les tores
- Hasse principle and weak approximation for pencils of Severi-Brauer and similar varieties.
- Arithmetic on curves of genus 1. VII. The dual exact sequence.
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: The arithmetic of the Chow group of zero-cycles