Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups. II
DOI10.1007/BF02622116zbMath0863.43001OpenAlexW3093438938MaRDI QIDQ1910199
Elias M. Stein, Fulvio Ricci, Detlef Müller
Publication date: 28 May 1997
Published in: Mathematische Zeitschrift (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/174850
Sobolev normsublaplaciannilpotent Lie groups\(H\)-type groupMarcinkiewicz multipliersmultiparameterHeisenberg type groups\(L^ p\)-boundedness
Homomorphisms and multipliers of function spaces on groups, semigroups, etc. (43A22) Analysis on other specific Lie groups (43A80) (L^p)-spaces and other function spaces on groups, semigroups, etc. (43A15)
Related Items (54)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- L\({}^ p\) harmonic analysis and Radon transforms on the Heisenberg group
- Two-parameter maximal functions in the Heisenberg group
- Hypoellipticite analytique sur des groupes nilpotents de rang 2
- Harmonic analysis on solvable extensions of H-type groups
- \(H\)-type groups and Iwasawa decompositions
- Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups. I
- Homogeneous Fourier multipliers of Marcinkiewicz type
- On spectral multipliers for Heisenberg and related groups
- Solvability for a class of doubly characteristic differential operators on 2-step nilpotent groups
- A functional calculus for Rockland operators on nilpotent Lie groups
- Caracterisation des operateurs hypoelliptiques homogenes
- A characterization of localized Bessel potential spaces and applications to Jacobi and Henkel multipliers
- The Strong Maximal Function on a Nilpotent Group
- Fundamental Solutions for a Class of Hypoelliptic PDE Generated by Composition of Quadratic Forms
- Multiplier theorem on generalized Heisenberg groups
- Hardy Spaces on Homogeneous Groups. (MN-28), Volume 28
This page was built for publication: Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups. II