The theory of non-Archimedean generalized functions and its applications to quantum mechanics and field theory
DOI10.1007/BF02367241zbMath0856.46052MaRDI QIDQ1910819
Publication date: 23 April 1996
Published in: Journal of Mathematical Sciences (New York) (Search for Journal in Brave)
integration theory\(p\)-adic model of quantum physics\(p\)-adic probability distributionsFeynman distributionsfunctions that assume values in a n.a. fieldquantum mechanics for non Archimedean wave functions
Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics (81Q05) Functional analysis over fields other than (mathbb{R}) or (mathbb{C}) or the quaternions; non-Archimedean functional analysis (46S10) Path integrals in quantum mechanics (81S40) Applications of functional analysis in quantum physics (46N50) Logical foundations of quantum mechanics; quantum logic (quantum-theoretic aspects) (81P10) Measures and integration on abstract linear spaces (46G12) Distributions, generalized functions, distribution spaces (46F99)
Cites Work
- Superanalysis, I. Differential calculus
- Mathematical methods of non-Archimedean physics
- Functional superanalysis
- MEASURES ON LINEAR TOPOLOGICAL SPACES
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: The theory of non-Archimedean generalized functions and its applications to quantum mechanics and field theory