A hybrid iterative method for symmetric positive definite linear systems
From MaRDI portal
Publication:1911442
DOI10.1007/BF02142490zbMath0853.65042OpenAlexW2011886482MaRDI QIDQ1911442
Daniela Calvetti, Lothar Reichel
Publication date: 5 January 1997
Published in: Numerical Algorithms (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf02142490
numerical resultsconjugate gradient methodextreme eigenvaluesoptimal rate of convergenceRichardson iterationsymmetric positive definite linear systems
Inequalities involving eigenvalues and eigenvectors (15A42) Iterative numerical methods for linear systems (65F10)
Related Items
Leja, Fejér-Leja and \(\mathfrak{R}\)-Leja sequences for Richardson iteration, A hybrid iterative method for symmetric indefinite linear systems
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods. I, II
- The application of Leja points to Richardson iteration and polynomial preconditioning
- Leapfrog variants of iterative methods for linear algebraic equations
- Hybrid procedures for solving linear systems
- Adaptive Richardson iteration based on Leja points
- Sur certaines suites liées aux ensembles plans et leur application à la représentation conforme
- Estimates of Eigenvalues for Iterative Methods
- A Hybrid GMRES Algorithm for Nonsymmetric Linear Systems
- A Hybrid Chebyshev Krylov Subspace Algorithm for Solving Nonsymmetric Systems of Linear Equations
- Approximate solutions and eigenvalue bounds from Krylov subspaces
- Calculation of Gauss Quadrature Rules