Picard-Lefschetz theory and characters of a semisimple Lie group
DOI10.1007/BF01884312zbMath0851.22013WikidataQ115393097 ScholiaQ115393097MaRDI QIDQ1911564
Publication date: 11 November 1996
Published in: Inventiones Mathematicae (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/144311
Fourier transformWeyl groupLie grouphomologycoadjoint orbitsCartan subalgebrasemisimple Lie algebrawave front setPicard-Lefschetz theorymonodromy representation
Representations of Lie algebras and Lie superalgebras, algebraic theory (weights) (17B10) Structure of families (Picard-Lefschetz, monodromy, etc.) (14D05) Representations of Lie and linear algebraic groups over real fields: analytic methods (22E45)
Related Items (20)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Characters, asymptotic and n-homology of Harish-Chandra modules
- The local structure of characters
- Goldie rank in the enveloping algebra of a semisimple Lie algebra. I, II
- Invariant eigendistributions on a semisimple Lie algebra and homology classes on the conormal variety. I: An integral formula
- Gelfand-Kirillov dimension for Harish-Chandra modules
- Differential operators on homogeneous spaces. I: Irreducibility of the associated variety for annihilators of induced modules
- Picard-Lefschetz theory for the coadjoint quotient of a semisimple Lie algebra
- Projection d'orbites, formule de Kirillov et formule de Blattner
- Intégrales asymptotiques et monodromie
- Gelfand-Kirillov Dimension for the Annihilators of Simple Quotients of Verma Modules
This page was built for publication: Picard-Lefschetz theory and characters of a semisimple Lie group