Small parameter in the theory of isometric imbeddings for two-dimensional Riemannian manifolds into Euclidean spaces
DOI10.1007/BF02362833zbMath0849.53041OpenAlexW2065296952WikidataQ115392402 ScholiaQ115392402MaRDI QIDQ1912507
Publication date: 10 November 1996
Published in: Journal of Mathematical Sciences (New York) (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf02362833
KdV equations (Korteweg-de Vries equations) (35Q53) Differential geometry of immersions (minimal, prescribed curvature, tight, etc.) (53C42) Embeddings in differential topology (57R40) Research exposition (monographs, survey articles) pertaining to differential geometry (53-02)
Related Items (2)
Cites Work
- Des surfaces à courbure négative constante dans l'espace à trois dimensions et de leurs singularités
- The local isometric embedding in \(R^ 3\) of 2-dimensional Riemannian manifolds with nonnegative curvature
- Globale Tschebyscheff-Netze auf Riemannschen Mannigfaltigkeiten und Fortsetzung von Flächen konstanter negativer Krümmung
- Symmetric positive linear differential equations
- The local isometric embedding inR3 of two-dimensional riemannian manifolds with gaussian curvature changing sign cleanly
- The inverse function theorem of Nash and Moser
- ISOMETRIC IMMERSIONS OF TWO-DIMENSIONAL RIEMANNIAN METRICS IN EUCLIDEAN SPACE
- Local isometric embedding of two dimensional Riemannian manifolds into \(R^ 3\) with nonpositive Gaussian curvature
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Small parameter in the theory of isometric imbeddings for two-dimensional Riemannian manifolds into Euclidean spaces