Lagrange interpolation polynomials in \(E^ p (D)\) with \(1
From MaRDI portal
Publication:1912649
DOI10.1007/BF01874607zbMath0872.30021MaRDI QIDQ1912649
Publication date: 20 October 1997
Published in: Acta Mathematica Hungarica (Search for Journal in Brave)
Lua error in Module:PublicationMSCList at line 37: attempt to index local 'msc_result' (a nil value).
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- On the degree of polynomial approximation in \(E^p(D)\)
- On the theory of approximation of functions on closed sets of the complex plane (with reference to a problem of S. M. Nikol'skii)
- Convergence of interpolants based on the roots of Faber polynomials
- Polynomial approximation in \(E^ p(D)\) with \(0<p<1\)
- Convergence of complex Lagrange interpolation polynomials on the locus of the interpolation points
- On Faber polynomials and Faber expansions
This page was built for publication: Lagrange interpolation polynomials in \(E^ p (D)\) with \(1<p< +\infty\)