Numerical study of three multilevel preconditioners for solving \(2D\) unsteady Navier-Stokes equations
From MaRDI portal
Publication:1913234
DOI10.1016/0045-7825(94)00712-VzbMath0851.76047WikidataQ128114583 ScholiaQ128114583MaRDI QIDQ1913234
Richard E. Ewing, O. P. Iliev, Svetozar Margenov, Panayot S. Vassilevski
Publication date: 28 November 1996
Published in: Computer Methods in Applied Mechanics and Engineering (Search for Journal in Brave)
fourth-order elliptic equationsoptimal-order multilevel preconditionerssymmetric linear systems of equations
Navier-Stokes equations for incompressible viscous fluids (76D05) Finite difference methods applied to problems in fluid mechanics (76M20)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Block-implicit multigrid solution of Navier-Stokes equations in primitive variables
- Algebraic multilevel preconditioning methods. I
- Finite Element Solution of Boundary Value Problems
- Iterative adaptive implicit-explicit methods for flow problems
- Solution techniques for the vorticity–streamfunction formulation of two‐dimensional unsteady incompressible flows
- Petrov‐Galerkin methods on multiply connected domains for the vorticity‐stream function formulation of the incompressible Navier‐Stokes equations
- Hybrid V-Cycle Algebraic Multilevel Preconditioners
- Performance of certain iterative methods in solving implicit difference schemes for 2-D Navier-Stokes equations