Explicit symmetric Runge-Kutta-Nyström methods for parallel computers
DOI10.1016/0898-1221(95)00198-0zbMath0849.65053OpenAlexW2069683697MaRDI QIDQ1913449
Publication date: 3 November 1996
Published in: Computers \& Mathematics with Applications (Search for Journal in Brave)
Full work available at URL: https://ir.cwi.nl/pub/2632
Nonlinear ordinary differential equations and systems (34A34) Stability and convergence of numerical methods for ordinary differential equations (65L20) Parallel numerical computation (65Y05) Numerical methods for initial value problems involving ordinary differential equations (65L05) Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations (65L06)
Related Items (11)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Stability of collocation-based Runge-Kutta-Nyström methods
- Ein Runge-Kutta-Nyström-Formelpaar der Ordnung 11(12) für Differentialgleichungen der Form \(y=f(x,y)\)
- New Runge-Kutta-Nyström formula-pairs of order 8(7), 9(8), 10(9) and 11(10) for differential equations of the form \(y=f(x,y)\)
- \(A\)-stable diagonally implicit Runge-Kutta-Nyström methods for parallel computers
- Méthodes de Nystrom pour l'équation différentielle y=f(x,y)
- Parallel block predictor-corrector methods of Runge-Kutta type
- Explicit, high-order Runge-Kutta-Nyström methods for parallel computers
- Parallel iteration of symmetric Runge-Kutta methods for nonstiff initial-value problems
- Explicit parallel two-step Runge-Kutta-Nyström methods
- Note on the performance of direct and indirect Runge-Kutta-Nyström methods
- Klassische Runge-Kutta-Nyström-Formeln mit SchrittweitenKontrolle für Differentialgleichungen \(\ddot x= f(t,x)\)
- Ein Runge-Kutta-Nyström-Formelpaar der Ordnung 10(11) für Differentialgleichungen der Formy′ =f(x, y)
- A One-step Method of Order 10 for y″ = f(x, y)
- Eine Runge-Kutta-Nyström-Formel 9-ter Ordnung mit Schrittweitenkontrolle für Differentialgleichungenx =f(t, x)
This page was built for publication: Explicit symmetric Runge-Kutta-Nyström methods for parallel computers