A subclass of Bayes linear estimators that are minimax
From MaRDI portal
Publication:1914886
DOI10.1007/BF00046990zbMath0844.62008OpenAlexW2051604121MaRDI QIDQ1914886
Publication date: 29 August 1996
Published in: Acta Applicandae Mathematicae (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf00046990
least squares estimatorrestricted parameter spaceuniversal admissibilityBayes linear estimatorsellipsoidal parameter constraintsgeneralized quadratic risk function
Linear regression; mixed models (62J05) Bayesian problems; characterization of Bayes procedures (62C10) Minimax procedures in statistical decision theory (62C20)
Related Items (2)
Median loss decision theory ⋮ Computing the estimator of a parameter vector via a competing Bayes method
Cites Work
- Minimax linear regression estimation with symmetric parameter restrictions
- Full and partial minimax estimation in regression analysis with additional linear constraints
- Estimation of parameters in a linear model
- Characterization of minimax linear estimators in linear regression
- Note on a paper
- Minimax estimation with additional linear restrictions - a simulation study
- Quasi minimax estimation in the linear regression model
- Minimax properties for linear estimators of the location parameter of a linear model
- Admissible improvements of the least squares estimator1
- Improved inference in linear models with additional information
- Minimax linear, ridge and shrunken estimators for linear parameters
- A minimax linear estimator for linear parameters under restrictions in form of inequalities
- Bayes, Admissible, and Minimax Linear Estimators in Linear Models with Restricted Parameter Space
This page was built for publication: A subclass of Bayes linear estimators that are minimax