Applicability of the Bramble-Hilbert lemma in interpolation problems of narrow quadrilateral isoparametric finite elements
From MaRDI portal
Publication:1917845
DOI10.1016/0377-0427(95)00053-4zbMath0847.41003OpenAlexW2061093068WikidataQ124838767 ScholiaQ124838767MaRDI QIDQ1917845
Michèle Vanmaele, Alexander Ženíšek
Publication date: 15 July 1996
Published in: Journal of Computational and Applied Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0377-0427(95)00053-4
Related Items
Nonconforming rotated \(Q_1\) element on non-tensor product anisotropic meshes ⋮ Error estimation of anisotropic interpolation for serendipity elements of arbitrary degree ⋮ Layer-adapted meshes for convection-diffusion problems ⋮ Anisotropic biquadratic element with superclose result ⋮ The minimal angle condition for quadrilateral finite elements of arbitrary degree ⋮ A quadrilateral, anisotropic, superconvergent, nonconforming double set parameter element ⋮ Lagrange and average interpolation over 3D anisotropic elements ⋮ Nonconforming mixed finite element approximation to the stationary Navier-Stokes equations on anisotropic meshes ⋮ Anisotropic interpolation error estimate for arbitrary quadrilateral isoparametric elements
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On semiregular families of triangulations and linear interpolation
- The interpolation theorem for narrow quadrilateral isoparametric finite elements
- On the finite element method
- Bounds for a class of linear functionals with applications to Hermite interpolation
- Interpolation polynomials on the triangle
- Interpolation theory over curved elements, with applications to finite element methods
- Estimation of Linear Functionals on Sobolev Spaces with Application to Fourier Transforms and Spline Interpolation
- Triangular Elements in the Finite Element Method