Asymptotics of periodic subelliptic operators
DOI10.1007/BF02921770zbMath0861.43005OpenAlexW2079220468MaRDI QIDQ1917958
Ola Bratteli, Derek W. Robinson, Charles J. K. Batty, Palle E. T. Jorgensen
Publication date: 29 April 1997
Published in: The Journal of Geometric Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf02921770
Numerical computation of solutions to systems of equations (65H10) A priori estimates in context of PDEs (35B45) Representations of groups, semigroups, etc. (aspects of abstract harmonic analysis) (43A65) Nilpotent and solvable Lie groups (22E25) Representations of Lie and linear algebraic groups over real fields: analytic methods (22E45)
Related Items (3)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Opérateurs uniformément sous-elliptiques sur les groupes de Lie. (Uniformly sub-elliptic operators on Lie groups)
- A new proof of Moser's parabolic Harnack inequality using the old ideas of Nash
- Continuity of Solutions of Parabolic and Elliptic Equations
- Explicit Constants for Gaussian Upper Bounds on Heat Kernels
- AVERAGING ANDG-CONVERGENCE OF DIFFERENTIAL OPERATORS
- HEAT KERNELS IN ONE DIMENSION
- Heat Kernel Bounds and Homogenization of Elliptic Operators
- Hardy Spaces on Homogeneous Groups. (MN-28), Volume 28
This page was built for publication: Asymptotics of periodic subelliptic operators