Operator calculus approach to orthogonal polynomial expansions
DOI10.1016/0377-0427(95)00161-1zbMath0858.65014OpenAlexW1977563400MaRDI QIDQ1919370
Philip Feinsilver, René Schott
Publication date: 13 October 1996
Published in: Journal of Computational and Applied Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0377-0427(95)00161-1
algorithmHeisenberg algebraMeixner polynomialsKrawtchouk polynomialsoperational calculusgeneralized Fourier coefficientsseries of orthogonal polynomialsKrawtchouk transforms
Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) (33C45) Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.) (42C10) Computation of special functions and constants, construction of tables (65D20) Numerical methods for trigonometric approximation and interpolation (65T40) Classical operational calculus (44A45)
Related Items (3)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A new application of the discrete Laguerre polynomials in the numerical evaluation of the Hankel transform of a strongly decreasing even function
- Representations and stochastic processes on groups of type-H
- Efficient Computation of the Fourier Transform on Finite Groups
- An operator calculus approach to the evolution of dynamic data structures
- Orthogonale Polynomsysteme Mit Einer Besonderen Gestalt Der Erzeugenden Funktion
This page was built for publication: Operator calculus approach to orthogonal polynomial expansions