Applications of cohomology to set theory. II: Todorčević trees
From MaRDI portal
Publication:1919535
DOI10.1016/0168-0072(95)00024-0zbMath0855.03030OpenAlexW2061343979MaRDI QIDQ1919535
Publication date: 9 February 1997
Published in: Annals of Pure and Applied Logic (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0168-0072(95)00024-0
cohomologyAronszajn treediamondMartin's AxiomHausdorff gaps\(\omega_ 1\)-treesspecial treesTodorčević trees
Continuum hypothesis and Martin's axiom (03E50) Other combinatorial set theory (03E05) Set theory (03E99)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Set theory. An introduction to independence proofs
- Applications of cohomology to set theory. I: Hausdorff gaps
- The Souslin problem
- Les foncteurs dérivés de lim et leurs applications en théorie des modules
- Cohomology Detects Failures of the Axiom of Choice
- Remarks on Martin's Axiom and the Continuum Hypothesis
- Combinatorics on large cardinals
- Partition Problems in Topology
- Multiple Forcing
This page was built for publication: Applications of cohomology to set theory. II: Todorčević trees