On the diophantine equations \(ax^ 2 + bx + c = c_ 0c_ 1^{y_ 1} \cdots c_ r^{y_ r}\)
From MaRDI portal
Publication:1919697
DOI10.1007/BF01195531zbMath0867.11018MaRDI QIDQ1919697
Publication date: 10 October 1996
Published in: Applicable Algebra in Engineering, Communication and Computing (Search for Journal in Brave)
algorithmcoding theoryexponential equationsquadratic diophantine equationsRamanujan's diophantine equation
Linear codes (general theory) (94B05) Quadratic and bilinear Diophantine equations (11D09) Exponential Diophantine equations (11D61)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- The diophantine equation \(x^2+7=2^n\)
- The Diophantine equation \(2^n=x^2+7\)
- Transitive linear groups and linear groups which contain irreducible subgroups of prime order
- The Diophantine Equation 2 n+2 - 7 = x 2 and Related Problems
- Über eine Diophantische Gleichung von Ramanujan-Nagell und ihre Verallgemeinerung
This page was built for publication: On the diophantine equations \(ax^ 2 + bx + c = c_ 0c_ 1^{y_ 1} \cdots c_ r^{y_ r}\)