Quantum dissipative systems. I: Canonical quantization and quantum Liouville equation
From MaRDI portal
Publication:1920494
DOI10.1007/BF01018575zbMath0861.70008OpenAlexW2118491926MaRDI QIDQ1920494
Publication date: 12 May 1997
Published in: Theoretical and Mathematical Physics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf01018575
principle of least actionharmonic oscillator with frictionSedov's variational principlevon Neumann equations
Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory (81Q20) Mechanics of particles and systems (70-XX)
Related Items (4)
Adiabatic dynamics of one-dimensional classical Hamiltonian dissipative systems ⋮ Quantum dissipative systems. IV: Analogues of Lie algebras and groups ⋮ Quantum dissipative systems. III: Definition and algebraic structure ⋮ Applying the Linblad equation to quantum dissipative systems
Cites Work
- On the generators of quantum dynamical semigroups
- Properties of quantum Markovian master equations
- The unpredictability of quantum gravity
- Über den Begriff des Spannungstensors bei Kontinuumsmodellen mit inneren Freiheitsgraden
- The range of application of the lagrange formalism — I
- A simple nonlinear dissipative quantum evolution equation
- No Lagrangian? No quantization!
- Dissipative quantum dynamics: solution of the generalized von Neumann equation for the damped harmonic oscillator
- On Dissipative Systems and Related Variational Principles
- A Note on the Quantization of Dissipative Systems
- Quantum Fields in Curved Space
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Quantum dissipative systems. I: Canonical quantization and quantum Liouville equation