A Helmholtz-Lie type characterization of ellipsoids. II
From MaRDI portal
Publication:1921340
DOI10.1007/BF02711133zbMath0864.52005OpenAlexW4232608739MaRDI QIDQ1921340
Peter M. Gruber, Monika Ludwig
Publication date: 25 August 1996
Published in: Discrete \& Computational Geometry (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/131377
Global surface theory (convex surfaces à la A. D. Aleksandrov) (53C45) Convex sets in (n) dimensions (including convex hypersurfaces) (52A20) Affine analytic geometry (51N10)
Related Items (5)
Contributions to affine surface area ⋮ Orlicz-Lorentz centroid bodies ⋮ Smoothness of the Steiner symmetrization ⋮ The Orlicz mean zonoid operator ⋮ Characteristic properties of ellipsoids and convex quadrics
Cites Work
- Zur Affinoberfläche konvexer Körper. (On affine surfaces of convex bodies)
- Über einige Eigenschaften der Affinoberfläche beliebiger konvexer Körper. (On some properties of the affine surface area of arbitrary convex bodies)
- Generalized spaces with many isometries
- Centroaffinely homogeneous surfaces in \(\mathbb{R}^ 3\)
- Geominimal surface area
- A Helmholtz-Lie type characterization of ellipsoids. I
- Parabolic collineations leaving invariant a plane convex set
- Sur une propriété caractéristique de l'ellipsoїde
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: A Helmholtz-Lie type characterization of ellipsoids. II