Structure of \(\alpha\)-stratified modules for finite-dimensional Lie algebras. I
From MaRDI portal
Publication:1921920
DOI10.1006/jabr.1996.0229zbMath0869.17006OpenAlexW2092622288WikidataQ115396094 ScholiaQ115396094MaRDI QIDQ1921920
Volodymyr Mazorchuk, Vyacheslav M. Futorny
Publication date: 3 November 1996
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1006/jabr.1996.0229
Representations of Lie algebras and Lie superalgebras, algebraic theory (weights) (17B10) Semisimple Lie groups and their representations (22E46) Simple, semisimple, reductive (super)algebras (17B20)
Related Items
SHAPOVALOV FORM FOR QUANTUM DEFORMATIONS OF GENERALIZED VERMA MODULES ⋮ On multiplicities of simple subquotients in generalized Verma modules ⋮ Generalized Verma modules over \(\mathfrak{sl}_{n + 2}\) induced from \(\mathcal{U}(\mathfrak{h}_n)\)-free \(\mathfrak{sl}_{n + 1}\)-modules ⋮ Reducibility of generalized Verma modules for Hermitian symmetric pairs ⋮ Standardly stratified algebras and tilting ⋮ A generalization of the category \(\mathcal O\) of Bernstein-Gelfand-Gelfand ⋮ Generalized Verma modules induced from \(sl(2,\mathbb{C})\) and associated Verma modules ⋮ Schubert filtration for simple quotients of generalized Verma modules ⋮ Constructions of Stratified Algebras ⋮ Jantzen coefficients and simplicity of parabolic Verma modules ⋮ On the determinant of Shapovalov form for generalized Verma modules ⋮ A combinatorial description of blocks in \({\mathcal O}({\mathcal P},\Lambda)\) associated with \(sl(2)\)-induction ⋮ Generalized verma modules over the lie algebra of typeG2 ⋮ Parabolic decomposition for properly stratified algebras