Symbolic calculus on the nilpotent orbits of \(SO_ 0(1,2)\)
From MaRDI portal
Publication:1921971
DOI10.1016/0393-0440(95)00029-1zbMath0853.58115OpenAlexW2093547340WikidataQ127255265 ScholiaQ127255265MaRDI QIDQ1921971
Publication date: 5 January 1997
Published in: Journal of Geometry and Physics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0393-0440(95)00029-1
anti-de Sitter space-timeMinkowski space-timesymbolic calculusPoincaré groupcoadjoint conical orbitszero mass particles
Two-dimensional field theories, conformal field theories, etc. in quantum mechanics (81T40) Applications of global analysis to the sciences (58Z05)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- General concept of quantization
- Some ideas about quantization
- Deformation theory and quantization. I: Deformations of symplectic structures
- The indecomposable representation of \(\text{SO}_ 0 (2,2)\) on the one- particle space of the massless field in \(1+1\) dimension
- La série discrète de ${\rm SL}(2,\,{R})$ et les opérateurs pseudo-différentiels sur une demi-droite
- The Stratonovich–Weyl correspondence for one-dimensional kinematical groups
- Quantization of the nilpotent orbits in so(1,2)* and massless particles on (anti-)de Sitter space–time
- Moyal quantization with compact symmetry groups and noncommutative harmonic analysis
This page was built for publication: Symbolic calculus on the nilpotent orbits of \(SO_ 0(1,2)\)