Congruences, equational theories and lattice representations
From MaRDI portal
Publication:1922118
DOI10.1007/BF01879733zbMath0856.06003OpenAlexW1982469508MaRDI QIDQ1922118
Publication date: 24 February 1997
Published in: Periodica Mathematica Hungarica (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf01879733
surveylattices of equational theorieslattices of congruencesalgebraic latticelattice of equivalence relationssimilarity typerepresentation of lattices
Representation theory of lattices (06B15) Research exposition (monographs, survey articles) pertaining to ordered structures (06-02)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A new product of algebras and a type reduction theorem
- Proof theory for linear lattices
- Two notes on the Arguesian identity
- A property of the lattice of equational theories
- Weak distributive laws and their role in lattices of congruences and equational theories
- Some applications of the term condition
- Structural diversity in the lattice of equational theories
- Further properties of lattices of equational theories
- Intervals in the lattice of varieties
- A new proof of the congruence lattice representation theorem
- Congruence lattices of algebras of fixed similarity type. I
- A perspective on algebraic representations of lattices
- On the representation of distributive semilattices
- Lattices of equational theories are congruence lattices of monoids with one additional unary operation
- Covering in the lattice of equational theories and some properties of term finite theories
- Congruence lattices of algebras of fixed similarity type. II
- Arguesian lattices which are not type-1
- On the structure of the lattice of equational classes \({\mathcal L}(\tau)\)
- Topics in universal algebra
- Embedding the dual of \(\Pi^\infty\) in the lattice of equational classes of semigroups.
- The independence of certain related structures of a universal algebra. I. Partial algebras with useless operations and other lemmas
- Congruence relations and multiplicity types of algebras
- The class of Arguesian lattices is self-dual
- Representation of Modular Lattices and Of Relation Algebras
- The structure of finite algebras
- On the Congruence Lattice Characterization Theorem
- Arguesian lattices which are not linear
- Algebras Whose Congruence Lattices are Distributive.
- On the representation of lattices
- Lattices, equivalence relations, and subgroups
- On congruence lattices of lattices
This page was built for publication: Congruences, equational theories and lattice representations