Algebraic Bethe ansatz for the eight-vertex model with general open boundary conditions

From MaRDI portal
Publication:1922732

DOI10.1016/0550-3213(96)00398-7zbMath0925.82059arXivhep-th/9604016OpenAlexW2009935709MaRDI QIDQ1922732

Zhongxia Yang, Heng Fan, Kang-jie Shi, Bo-Yu Hou

Publication date: 24 September 1996

Published in: Nuclear Physics. B (Search for Journal in Brave)

Full work available at URL: https://arxiv.org/abs/hep-th/9604016




Related Items

Equivalences between spin models induced by defectsA representation basis for the quantum integrable spin chain associated with the \(su(3)\) algebraRepresentation of the boundary elliptic quantum group \(BE_{\tau,\eta}(\text{sl}_2)\) and the Bethe ansatzBethe states of the XXZ spin-\(\frac{1}{2}\) chain with arbitrary boundary fieldsBethe ansatz for the \(XXX\)-\(S\) chain with non-diagonal open boundaries\(T\)-\(Q\) relation and exact solution for the \(XYZ\) chain with general non-diagonal boundary termsExact solution of XXZ spin chain with unparallel boundary fieldsBethe/gauge correspondence for ABCDEFG-type 3d gauge theoriesCorrelation functions of the XXZ spin chain with the twisted boundary conditionOff-diagonal Bethe ansatz solutions of the anisotropic spin-\(\frac{1}{2}\) chains with arbitrary boundary fieldsExact solution of \(\mathbb{Z}_n\) Belavin model with open boundary conditionOn separation of variables for reflection algebrasProperties of eigenstates of the six-vertex model with twisted and open boundary conditionsHeisenberg XYZ Hamiltonian with integrable impuritiesThe open XXZ spin chain in the SoV framework: scalar product of separate statesFunctional relations from the Yang-Baxter algebra: Eigenvalues of the \(XXZ\) model with non-diagonal twisted and open boundary conditionsSolution of the \(\text{SU}(N)\) vertex model with non-diagonal open boundariesSolution of the dual reflection equation for An−1(1) solid-on-solid modelSpin current in quantum \(XXZ\) spin chainScalar products of the open XYZ chain with non-diagonal boundary termsA one-dimensional many-body integrable model from Zn Belavin model with open boundary conditionsOff-diagonal Bethe Ansatz on the \textit{so}(5) spin chainCorrelation functions of the \(XYZ\) model with a boundary.Integrable $A^{(1)}_{n-1}$ IRF Model with Reflecting Boundary ConditionsElliptic Gaudin models and elliptic KZ equationsCorrelation functions for open XXZ spin 1/2 quantum chains with unparallel boundary magnetic fields



Cites Work