On some simultaneous methods based on Weierstrass' correction
DOI10.1016/0377-0427(95)00278-2zbMath0859.65048OpenAlexW2024328969WikidataQ127360619 ScholiaQ127360619MaRDI QIDQ1923458
Tetsuya Sakurai, Miodrag S. Petković
Publication date: 7 April 1997
Published in: Journal of Computational and Applied Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0377-0427(95)00278-2
convergenceNewton's methodnumerical examplesrational interpolationzeros of polynomialsmultistep methodssecant methodinterval methoditeration methodssimultaneous methodsWeierstrass correctionMaehly-Ehrlich-Aberth method
Zeros of polynomials, rational functions, and other analytic functions of one complex variable (e.g., zeros of functions with bounded Dirichlet integral) (30C15) Numerical computation of solutions to single equations (65H05)
Related Items
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A high-order iterative formula for simultaneous determination of zeros of a polynomial
- Parallel Laguerre iterations: The complex case
- A family of root finding methods
- Weierstrass formula and zero-finding methods
- Iterative methods for simultaneous inclusion of polynomial zeros
- On iteration methods without derivatives for the simultaneous determination of polynomial zeros
- Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von Polynomen
- A class of iterative methods for holomorphic functions
- Circular arithmetic and the determination of polynomial zeros
- Simultaneous inclusion of the zeros of a polynomial
- Zur iterativen Auflösung algebraischer Gleichungen
- The Use of Rational Functions in the Iterative Solution of Equations on a Digital Computer
- A new method for solving polynomial equations
- Iteration Methods for Finding all Zeros of a Polynomial Simultaneously
- A modified Newton method for polynomials
- Error Bounds for Zeros of a Polynomial Based Upon Gerschgorin's Theorems