Target-space duality between simple compact Lie groups and Lie algebras under the Hamiltonian formalism. I: Remnants of duality at the classical level
From MaRDI portal
Publication:1924088
DOI10.1007/BF02103719zbMath0861.58015arXivhep-th/9503226WikidataQ115392790 ScholiaQ115392790MaRDI QIDQ1924088
Orlando Alvarez, Chien-Hao Liu
Publication date: 21 May 1997
Published in: Communications in Mathematical Physics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/hep-th/9503226
Hamilton's equations (70H05) String and superstring theories; other extended objects (e.g., branes) in quantum field theory (81T30) Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems (37J99)
Related Items
String equations in Whitham hierarchies: τ-functions and Virasoro constraints, Meromorphic Lax representations of (1+1)-dimensional multi-Hamiltonian dispersionless systems, On kernel formulas and dispersionless Hirota equations of the extended dispersionless BKP hierarchy, Non abelian \(T\)-duality for open strings, Generalised fluxes, Yang-Baxter deformations and the O\((d,d)\) structure of non-abelian \(T\)-duality, Type IIB supergravity solutions with \(\mathrm{AdS}_{5}\) from abelian and non-abelian T dualities, Unnamed Item, Poisson-Lie \(T\)-duality, Target space pseudoduality between dual symmetric spaces, Target space duality. I: General theory, Hamiltonian loop group actions and T-duality for group manifolds, \(T\)-duality of axial and vector dyonic integrable models, On quantum \(T\)-duality in \(\sigma\) models, Dispersionful analog of the Whitham hierarchy, Poisson-Lie \(T\)-duality and loop groups of Drinfeld doubles.
Cites Work
- Notes on Lie algebras.
- Remarks on non-abelian duality
- Duality symmetries from nonabelian isometries in string theory
- On nonabelian duality
- On non-abelian duality
- Axial-vector duality as a gauge symmetry and topology change in string theory.
- Some global aspects of duality in string theory
- Space–time topology change and stringy geometrya)
- Unnamed Item
- Unnamed Item
- Unnamed Item