Fourier multipliers between weighted anisotropic function spaces. I: Besov spaces
From MaRDI portal
Publication:1924304
DOI10.4171/ZAA/717zbMath0906.42005MaRDI QIDQ1924304
Publication date: 25 January 1999
Published in: Zeitschrift für Analysis und ihre Anwendungen (Search for Journal in Brave)
Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Multipliers for harmonic analysis in several variables (42B15) Sobolev (and similar kinds of) spaces of functions of discrete variables (46E39)
Related Items (2)
Fourier multipliers between weighted anisotropic function spaces. II: Besov-Triebel spaces ⋮ Singular kinetic equations and applications
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A discrete transform and decompositions of distribution spaces
- Bernstein's theorem and translation invariant operators
- A remark on orthonormal bases of compactly supported wavelets in Triebel- Lizorkin spaces. The case \(0<p, q<\infty\)
- Multipliers of \(H^p\) spaces
- Spectral invariance for pseudodifferential operators on weighted function spaces
- On Fourier multipliers between Besov spaces with \(0<p_0\leq \text{min}\{1,p_1\}\)
- On the Boundedness of Pseudo - Differential Operators on Weighted Besov - Triebel Spaces
- Weighted Parabolic Triebel Spaces of Product Type. Fourier Multipliers and Pseudo-Differential Operators
- Problems in harmonic analysis related to curvature
- Weighted Young's Inequality and Convolution Theorems on Weighted Besov Spaces
- Classes of Fourier Multipliers and Besov‐Nikolskij Spaces
- Entropy Numbers in Weighted Function Spaces and Eigenvalue Distributions of Some Degenerate Pseudodifferential Operators I
This page was built for publication: Fourier multipliers between weighted anisotropic function spaces. I: Besov spaces