Crossings and embracings of set-partitions and \(q\)-analogues of the logarithm of the Fourier transform
From MaRDI portal
Publication:1924373
DOI10.1016/S0012-365X(96)83020-2zbMath0878.05009OpenAlexW2061312072MaRDI QIDQ1924373
Publication date: 5 January 1998
Published in: Discrete Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0012-365x(96)83020-2
(q)-calculus and related topics (05A30) Combinatorial aspects of partitions of integers (05A17) Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type (42B10) Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) (33C45) Combinatorial probability (60C05)
Related Items
Fock space associated with quadrabasic Hermite orthogonal polynomials, Cumulants, lattice paths, and orthogonal polynomials, CUMULANTS IN NONCOMMUTATIVE PROBABILITY THEORY III: CREATION AND ANNIHILATION OPERATORS ON FOCK SPACES, The \((q, t)\)-Gaussian process
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Relations entre pont et excursion du mouvement brownien réel. (Relations between bridge and excursion of real Brownian motion)
- Addition of certain non-commuting random variables
- Combinatorial aspects of continued fractions
- A \(q\)-analog of the exponential formula
- On the structure of the lattice of noncrossing partitions
- Permutations selon leurs pics, creux, doubles montees et double descentes, nombres d'Euler et nombres de Genocchi
- A one-parameter family of transforms, linearizing convolution laws for probability distributions
- Sur les partitions non croisées d'un cycle. (The non-crossed partitions of a cycle)
- Étude et denombrement parallèles des partitions non-croisees d'un cycle et des decoupages d'un polygone convexe
- Recurrence relations, continued fractions, and orthogonal polynomials
- Sur Un Problème De Configurations Et Sur Les Fractions Continues
- Restricted permutations
- Moments of \(q\)-Laguerre polynomials and the Foata-Zeilberger bijection