A universal model for cosymplectic manifolds
From MaRDI portal
Publication:1924398
DOI10.1016/0393-0440(96)00047-2zbMath0861.53026OpenAlexW2010863260WikidataQ127631944 ScholiaQ127631944MaRDI QIDQ1924398
Manuel de León, Gijs M. Tuynman
Publication date: 14 April 1997
Published in: Journal of Geometry and Physics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0393-0440(96)00047-2
Related Items
Classification of infinitesimal symmetries in covariant classical mechanics ⋮ Special bracket versus Jacobi bracket on the classical phase space of general relativistic test particle ⋮ Quantum potential in covariant quantum mechanics ⋮ Cosymplectic and contact structures for time-dependent and dissipative Hamiltonian systems ⋮ GEOMETRIC STRUCTURES OF THE CLASSICAL GENERAL RELATIVISTIC PHASE SPACE ⋮ On the structure of co-Kähler manifolds ⋮ Universal models via embedding and reduction for locally conformal symplectic structures ⋮ Generalized geometrical structures of odd dimensional manifolds ⋮ A SURVEY ON COSYMPLECTIC GEOMETRY ⋮ Reviewing the geometric Hamilton–Jacobi theory concerning Jacobi and Leibniz identities ⋮ Integrable systems in cosymplectic geometry
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- \(R^{2n}\) is a universal symplectic manifold for reduction
- Le théorème de réduction de Marsden-Weinstein en géométrie cosymplectique et de contact. (The Marsden-Weinstein reduction theorem in cosymplectic and contact geometry)
- Gradient vector fields on cosymplectic manifolds
- Cosymplectic reduction for singular momentum maps