On initial conditions for the convergence of simultaneous root finding methods
DOI10.1007/BF02276878zbMath0862.65029OpenAlexW1530287661MaRDI QIDQ1924484
Publication date: 25 May 1997
Published in: Computing (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf02276878
convergencepolynomialpolynomial rootscomplex interval arithmeticcomplex rootssimultaneous rootfindingWeierstrass-Dochev methodGargantini-Henrici interval methodBörsch-Supan interval methodBörsch-Supan-Nourein methodHalley-like interval methodMaehly-Ehrlich methodsquare root interval methodsquare root methodWeierstrass interval method
Lua error in Module:PublicationMSCList at line 37: attempt to index local 'msc_result' (a nil value).
Related Items (20)
Cites Work
- On some improvements of square root iteration for polynomial complex zeros
- A note on some improvements of the simultaneous methods for determination of polynomial zeros
- On a generalisation of the root iterations for polynomial complex zeros in circular interval arithmetic
- On an iterative method for simultaneous inclusion of polynomial complex zeros
- On the convergence order of a modified method for simultaneous finding polynomial zeros
- An iteration formula for the simultaneous determination of the zeros of a polynomial
- Parallel Laguerre iterations: The complex case
- Weierstrass formula and zero-finding methods
- Iterative methods for simultaneous inclusion of polynomial zeros
- On iteration methods without derivatives for the simultaneous determination of polynomial zeros
- Residuenabschätzung für Polynom-Nullstellen mittels Lagrange-Interpolation
- Circular arithmetic and the determination of polynomial zeros
- Zur iterativen Auflösung algebraischer Gleichungen
- On Halley-Like Algorithms for Simultaneous Approximation of Polynomial Complex Zeros
- A modified Newton method for polynomials
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: On initial conditions for the convergence of simultaneous root finding methods