Strong unique continuation for solutions of a \(p(x)\)-Laplacian problem
From MaRDI portal
Publication:1925547
DOI10.1155/2012/108671zbMath1259.35101OpenAlexW2041911182WikidataQ58705514 ScholiaQ58705514MaRDI QIDQ1925547
Gabriel Soler López, Johnny Cuadro
Publication date: 18 December 2012
Published in: International Journal of Mathematics and Mathematical Sciences (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1155/2012/108671
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Lebesgue and Sobolev spaces with variable exponents
- Orlicz spaces and modular spaces
- A partial answer to a conjecture of B. Simon concerning unique continuation
- Harnack's inequality for \( p(\cdot\))-harmonic functions with unbounded exponent \(p\)
- Unique continuation and absence of positive eigenvalues for Schrödinger operators. (With an appendix by E. M. Stein)
- Electrorheological fluids: modeling and mathematical theory
- Eigenvalues of \(p(x)\)-Laplacian Dirichlet problem
- Existence of solutions for \(p(x)\)-Laplacian Dirichlet problem.
- Linear and quasilinear elliptic equations
- Unique continuation for non-negative solutions of quasilinear elliptic equations
- The uncertainty principle
- A Caffarelli–Kohn–Nirenberg-type inequality with variable exponent and applications to PDEs
- Elliptic problems in variable exponent spaces
- Form estimates for the 𝑝(𝑥)-Laplacean
- A Remark on a Paper by C. Fefferman
- Strict Monotonicity of Eigenvalues and Unique Continuation
- OnLp(x)norms
- Über konjugierte Exponentenfolgen
- Regularity results for a class of functionals with non-standard growth
- Strong unique continuation of eigenfunctions for \(p\)-Laplacian operator
- Sobolev embedding theorems for spaces \(W^{k,p(x)}(\Omega)\)