Copies of \(c_0\) in the space of Pettis integrable functions with integrals of finite variation
From MaRDI portal
Publication:1928056
DOI10.1007/S10474-011-0158-3zbMath1265.28028OpenAlexW2095857691MaRDI QIDQ1928056
Publication date: 2 January 2013
Published in: Acta Mathematica Hungarica (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10474-011-0158-3
Isomorphic theory (including renorming) of Banach spaces (46B03) Vector-valued set functions, measures and integrals (28B05)
Related Items (2)
On the work of Lech Drewnowski ⋮ Copies of \(c_0\) in the space of Pettis integrable functions revisited
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Banach spaces of vector-valued functions
- When Does ca(Σ, X) Contain a Copy of l ∞ or C 0 ?
- Quand L'Espace des Mesures a Variation Bornee Est-Il Faiblement Sequentiellement Complet?
- Embedding c0 in bvca(Σ, X)
- Sur les mesures vectorielles définies par une application Pettis-intégrable
- The Space of Pettis Integrable Functions is Barrelled
- EMBEDDING C0IN THE SPACE OF PETTIS INTEGRABLE FUNCTIONS
- On Sums of Pettis Integrable Random Elements
- When does $\mathrm{bvca} (\Sigma,X)$ Contain a Copy of $l_\infty$?
This page was built for publication: Copies of \(c_0\) in the space of Pettis integrable functions with integrals of finite variation