Factorable surfaces in the three-dimensional Euclidean and Lorentzian spaces satisfying \(\Delta r _{i } = \lambda _{i } r _{i }\)
From MaRDI portal
Publication:1928607
DOI10.1007/S00022-012-0117-3zbMath1257.53004OpenAlexW1969621651WikidataQ125936455 ScholiaQ125936455MaRDI QIDQ1928607
Bendehiba Senoussi, Mohammed Bekkar
Publication date: 3 January 2013
Published in: Journal of Geometry (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00022-012-0117-3
Surfaces in Euclidean and related spaces (53A05) Local differential geometry of Lorentz metrics, indefinite metrics (53B30)
Related Items (7)
THA-surfaces of finite type in the Galilean space \(\mathbb{G}^3\) ⋮ Unnamed Item ⋮ Affine factorable surfaces in isotropic spaces ⋮ Homothetical surfaces in three dimensional pseudo-Galilean spaces satisfying \(\Delta ^{II}\mathbf{x }_i=\lambda _i\mathbf{x }_i\) ⋮ Constant curvature factorable surfaces in 3-dimensional isotropic space ⋮ Non-zero constant curvature factorable surfaces in pseudo-Galilean space ⋮ Unnamed Item
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Helicoidal surfaces in the three-dimensional Lorentz-Minkowski space satisfying \(\Delta ^{II}r_{i} = \lambda _{i}r_{i}\)
- On surfaces of finite type in Euclidean 3-space
- Surfaces of finite type with constant mean curvature
- Surfaces of revolution in the 3-dimensional Lorentz-Minkowski space satisfying \(\Delta^{II}\vec r=A\vec r\)
This page was built for publication: Factorable surfaces in the three-dimensional Euclidean and Lorentzian spaces satisfying \(\Delta r _{i } = \lambda _{i } r _{i }\)