A high accuracy post-processing algorithm for the eigenvalues of elliptic operators
From MaRDI portal
Publication:1930401
DOI10.1007/s10915-011-9552-9zbMath1255.65206OpenAlexW2017224580MaRDI QIDQ1930401
Yunqing Huang, Quan Shen, Jun Hu
Publication date: 11 January 2013
Published in: Journal of Scientific Computing (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10915-011-9552-9
Related Items
Computing the lower and upper bounds of Laplace eigenvalue problem by combining conforming and nonconforming finite element methods, The lower/upper bound property of approximate eigenvalues by nonconforming finite element methods for elliptic operators, Constructing both lower and upper bounds for the eigenvalues of elliptic operators by nonconforming finite element methods, A penalized Crouzeix-Raviart element method for second order elliptic eigenvalue problems, Enhancing eigenvalue approximation with Bank--Weiser error estimators, Asymptotically Exact A Posteriori Error Estimates of Eigenvalues by the Crouzeix--Raviart Element and Enriched Crouzeix--Raviart Element
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- An oscillation-free adaptive FEM for symmetric eigenvalue problems
- A new class of Zienkiewicz-type non-conforming element in any dimensions
- Convergence and optimal complexity of adaptive finite element eigenvalue computations
- A posteriori error analysis of nonconforming methods for the eigenvalue problem
- On mixed finite element methods in plate bending analysis. I: The first Herrmann scheme
- Nonconforming finite element methods for eigenvalue problems in linear plate theory
- Asymptotic lower bounds for eigenvalues by nonconforming finite element methods
- High precision solutions of two fourth order eigenvalue problems
- Eigenvalue approximation from below using non-conforming finite elements
- A finite element method using singular functions for Poisson equations: Mixed boundary conditions
- A Posteriori Error Estimates for the Finite Element Approximation of Eigenvalue Problems
- Polynomial preserving recovery for meshes from Delaunay triangulation or with high aspect ratio
- On the boundary value problem of the biharmonic operator on domains with angular corners
- A Posteriori Error Estimates for Nonlinear Problems. Finite Element Discretizations of Elliptic Equations
- A Posteriori and a Priori Error Analysis for Finite Element Approximations of Self-Adjoint Elliptic Eigenvalue Problems
- Reviving the Method of Particular Solutions
- A posteriori error control for finite element approximations of elliptic eigenvalue problems