Wellposedness for anisotropic rotating fluid equations
From MaRDI portal
Publication:1931142
DOI10.1007/s11766-012-2534-3zbMath1265.35262OpenAlexW2370832319MaRDI QIDQ1931142
Daoyuan Fang, Ting Zhang, Su-Mei Wang
Publication date: 24 January 2013
Published in: Applied Mathematics. Series B (English Edition) (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11766-012-2534-3
Related Items (2)
Global well-posedness for the 3-D incompressible anisotropic rotating Navier-Stokes equations ⋮ Local and global existence results for the Navier-Stokes equations in the rotational framework
Cites Work
- Unnamed Item
- Unnamed Item
- Global wellposed problem for the 3-D incompressible anisotropic Navier-Stokes equations in an anisotropic space
- Uniform local existence for inhomogeneous rotating fluid equations
- The resolution of the Navier-Stokes equations in anisotropic spaces
- Flows of non-Lipschitzian vector fields and Navier-Stokes equations
- On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations
- Anisotropic Navier-Stokes equation in critical spaces
- Operator-Valued Fourier Multipliers, Vector - Valued Besov Spaces, and Applications
- A Uniqueness Result for the Navier--Stokes Equations with Vanishing Vertical Viscosity
- Fluids with anisotropic viscosity
- Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet
This page was built for publication: Wellposedness for anisotropic rotating fluid equations