Semismoothness of the maximum eigenvalue function of a symmetric tensor and its application
DOI10.1016/j.laa.2011.10.043zbMath1260.15010OpenAlexW2057944397WikidataQ59241508 ScholiaQ59241508MaRDI QIDQ1931769
Guoyin Li, Liqun Qi, Gaohang Yu
Publication date: 16 January 2013
Published in: Linear Algebra and its Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.laa.2011.10.043
Differential geometric aspects in vector and tensor analysis (53A45) Vector and tensor algebra, theory of invariants (15A72) Eigenvalues, singular values, and eigenvectors (15A18) Continuity and differentiation questions (26B05) Convexity of real functions of several variables, generalizations (26B25)
Related Items (18)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Tensor Decompositions and Applications
- Generalized Newton's method based on graphical derivatives
- Space tensor conic programming
- Perron-Frobenius theorem for nonnegative tensors
- Tame functions are semismooth
- The Łojasiewicz exponent of an analytic function at an isolated zero
- Multivariate polynomial minimization and its application in signal processing
- Nonsmooth analysis of eigenvalues
- Global error bounds for piecewise convex polynomials
- A nonsmooth version of Newton's method
- Eigenvalues of a real supersymmetric tensor
- On eigenvalue problems of real symmetric tensors
- On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors
- On the Asymptotically Well Behaved Functions and Global Error Bound for Convex Polynomials
- Nonsmooth Equations: Motivation and Algorithms
- Error Bounds of Generalized D-Gap Functions for Nonsmooth and Nonmonotone Variational Inequality Problems
- Finding the Largest Eigenvalue of a Nonnegative Tensor
- Optimization and nonsmooth analysis
- Semismooth and Semiconvex Functions in Constrained Optimization
- Strong Semismoothness of Eigenvalues of Symmetric Matrices and Its Application to Inverse Eigenvalue Problems
- On the Best Rank-1 and Rank-(R1 ,R2 ,. . .,RN) Approximation of Higher-Order Tensors
- Finite-Dimensional Variational Inequalities and Complementarity Problems
- Finite-Dimensional Variational Inequalities and Complementarity Problems
- An Eigenvalue Method for Testing Positive Definiteness of a Multivariate Form
- The Łojasiewicz Inequality for Nonsmooth Subanalytic Functions with Applications to Subgradient Dynamical Systems
- Second Order Sufficient Conditions for Weak and Strict Constrained Minima
- Higher Order Positive Semidefinite Diffusion Tensor Imaging
This page was built for publication: Semismoothness of the maximum eigenvalue function of a symmetric tensor and its application