Centralizers in the Jonquières group
From MaRDI portal
Publication:1931925
DOI10.1307/mmj/1353098512zbMath1273.14028OpenAlexW1971340229MaRDI QIDQ1931925
Julie Déserti, Dominique Cerveau
Publication date: 16 January 2013
Published in: Michigan Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://projecteuclid.org/euclid.mmj/1353098512
Related Items (7)
On solvable subgroups of the Cremona group ⋮ Jonquières maps and \(\mathrm{SL}(2;\mathbb{C})\)-cocycles ⋮ Centralizers of elements of infinite order in plane Cremona groups ⋮ Some properties of the group of birational maps generated by the automorphisms of \(\mathbb P^n_{\mathbb C}\) and the standard involution ⋮ Dynamical number of base-points of non base-wandering Jonquières twists ⋮ Actions of Cremona groups on CAT\((0)\) cube complexes ⋮ Borel subgroups of the plane Cremona group
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Elements and cyclic subgroups of finite order of the Cremona group
- On the groups of birational transformations of surfaces
- On birational transformations of pairs in the complex plane
- The \(C^1\) generic diffeomorphism has trivial centralizer
- Non linearizable holomorphic dynamics having an uncountable number of symmetries
- Dynamics of bimeromorphic maps of surfaces
- Feuilletages et Transformations Périodiques
- Groupes d'automorphismes de $({\bbfC},0)$ et équations différentielles $ydy+\cdots =0$
- Rigidity of centralizers of diffeomorphisms
- Experiments on some birational quadratic transformations
- Trivial centralizers for axiom A diffeomorphisms
- Trivial centralizers for codimension-one attractors
- Dynamical properties of plane polynomial automorphisms
- Centralizers of Anosov diffeomorphisms on tori
- Analytic actions of mapping class groups on surfaces
- Über ganze birationale Transformationen der Ebene.
- The Tits alternative for \(\text{Aut}[\mathbb C^2\)]
This page was built for publication: Centralizers in the Jonquières group