Explicit computation of Gross-Stark units over real quadratic fields
From MaRDI portal
Publication:1932395
DOI10.1016/j.jnt.2012.04.021zbMath1294.11208OpenAlexW2100252477MaRDI QIDQ1932395
Brett A. Tangedal, Paul Thomas Young
Publication date: 18 January 2013
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jnt.2012.04.021
Quadratic extensions (11R11) Algebraic number theory computations (11Y40) Class field theory (11R37) Zeta functions and (L)-functions of number fields (11R42) Zeta functions and (L)-functions (11S40)
Related Items (1)
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On \(p\)-adic multiple zeta and log gamma functions
- Hilbert modular forms and the Gross-Stark conjecture
- Über die Werte der Dedekindschen Zetafunktion
- The Stark conjectures on Artin \(L\)-functions at \(s=0\). Lecture notes of a course in Orsay edited by Dominique Bernardi and Norbert Schappacher.
- Continued fractions, special values of the double sine function, and Stark units over real quadratic fields
- Brumer elements over a real quadratic base field
- Values of abelian \(L\)-functions at negative integers over totally real fields
- Values at negative integers of zeta functions and \(p\)-adic zeta functions
- Normalized double sine functions
- Elliptic units for real quadratic fields
- On a \(p\)-adic analogue of Shintani's formula
- ANOTHER LOOK AT GROSS–STARK UNITS OVER THE NUMBER FIELD ℚ
- On <i>p</i>-adic absolute CM-periods I
- The p-Adic Log Gamma Function and p-Adic Euler Constants
- The Brumer-Stark conjecture in some families of extensions of specified degree
- Computations of Elliptic Units for Real Quadratic Fields
- Functorial Properties of Stark Units in Multiquadratic Extensions
This page was built for publication: Explicit computation of Gross-Stark units over real quadratic fields