Non-free extensions of the simplex codes over a chain ring with four elements
DOI10.1007/s10623-012-9649-7zbMath1259.94070OpenAlexW2059464650MaRDI QIDQ1934231
Thomas Honold, Ivan N. Landgev
Publication date: 28 January 2013
Published in: Designs, Codes and Cryptography (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10623-012-9649-7
hyperovalGray mapLee weightchain ringsimplex codeprojective Hjelmslev spaceHjelmslev plane\(R\)-linear code
Linear codes (general theory) (94B05) Geometric methods (including applications of algebraic geometry) applied to coding theory (94B27) Blocking sets, ovals, (k)-arcs (51E21) Other finite linear geometries (51E26) Ring geometry (Hjelmslev, Barbilian, etc.) (51C05)
Related Items (1)
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- A system of axioms for projective Hjelmslev spaces
- Hjelmslev-Räume. (Hjelmslev spaces)
- Dual numbers, Witt vectors, and Hjelmslev planes
- On maximal arcs in projective Hjelmslev planes over chain rings of even characteristic
- The existence of maximal \((q^2,2)\)-arcs in projective Hjelmslev planes over chain rings of length 2 and odd prime characteristic
- Linear codes over finite chain rings
- Linearly representable codes over chain rings
- A \(\mathbb Z_{4}\)-linear code of high minimum Lee distance derived from a hyperoval
- Hjelmslev-Ebenen mit verfeinerten Nachbarschaftsrelationen
- Linear Codes over Finite Chain Rings and Projective Hjelmslev Geometries
- Translates of linear codes over Z/sub 4/
- Arcs in projective Hjelmslev planes
- On n-uniform Hjelmslev planes
- On arcs in projective Hjelmslev planes
This page was built for publication: Non-free extensions of the simplex codes over a chain ring with four elements