A generalization of the Mitchell lemma: the Ulmer theorem and the Gabriel-Popescu theorem revisited
From MaRDI portal
Publication:1934965
DOI10.1016/J.JPAA.2012.01.014zbMath1264.18013OpenAlexW2056537414WikidataQ124815520 ScholiaQ124815520MaRDI QIDQ1934965
Constantin Năstăsescu, Laura Năstăsescu, Septimiu Crivei
Publication date: 30 January 2013
Published in: Journal of Pure and Applied Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jpaa.2012.01.014
Module categories in associative algebras (16D90) Functor categories, comma categories (18A25) Localization of categories, calculus of fractions (18E35)
Related Items (2)
Baer criterion for injectivity in abelian categories ⋮ Two criteria for locally Noetherian Grothendieck categories
Cites Work
- Gabriel-Popescu type theorems and applications
- Elementary torsion theories and locally finitely presented categories
- A quick proof of the Gabriel-Popesco theorem
- A generalization of the Gabriel-Popescu theorem
- A simple proof of Gabriel and Popesco's theorem
- A flatnes s criterion in Grothendieck categories
- Sur quelques points d'algèbre homologique
- Coherent Rings and Fp -Injective Modules
- Des catégories abéliennes
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: A generalization of the Mitchell lemma: the Ulmer theorem and the Gabriel-Popescu theorem revisited