Compact numerical quadrature formulas for hypersingular integrals and integral equations
DOI10.1007/s10915-012-9610-yzbMath1264.65033OpenAlexW1995272352MaRDI QIDQ1936320
Publication date: 4 February 2013
Published in: Journal of Scientific Computing (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10915-012-9610-y
numerical examplenumerical quadratureasymptotic expansionsRichardson extrapolationhypersingular integral equationsCauchy principal value integraltrapezoidal rulehypersingular integralsmidpoint ruleEuler-Maclaurin expansionsHadamard finite part integral
Numerical methods for integral equations (65R20) Approximate quadratures (41A55) Numerical quadrature and cubature formulas (65D32) Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type) (45E10)
Related Items (16)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Quadrature methods for periodic singular and weakly singular Fredholm integral equations
- Comparison of some numerical quadrature formulas for weakly singular periodic Fredholm integral equations
- Numerical evaluation of hypersingular integrals
- On the numerical solution of hypersingular and singular integral equations on the circle
- Euler-Maclaurin expansions for integrals with endpoint singularities: A new perspective
- Interlacing properties of the zeros of the orthogonal polynomials and approximation of the Hilbert transform
- Some numerical algorithms to evaluate Hadamard finite-part integrals
- Euler-Maclaurin expansions for integrals with arbitrary algebraic-logarithmic endpoint singularities
- Asymptotic error expansions for hypersingular integrals
- On the classical solvability of the mixed problem for a second-order one-dimensional hyperbolic equation
- The superconvergence of Newton-Cotes rules for the Hadamard finite-part integral on an interval
- The superconvergence of the composite midpoint rule for the finite-part integral
- Euler–Maclaurin expansions for integrals with arbitrary algebraic endpoint singularities
- An Extension of the Euler-Maclaurin Summation Formula to Functions with a Branch Singularity
- A Further Extension of the Euler-Maclaurin Summation Formula
- Practical Extrapolation Methods
This page was built for publication: Compact numerical quadrature formulas for hypersingular integrals and integral equations