Pointwise multipliers of Triebel-Lizorkin spaces on Carnot-Carathéodory spaces
From MaRDI portal
Publication:1936440
DOI10.1155/2012/153849zbMath1266.46024OpenAlexW2008370018WikidataQ58908127 ScholiaQ58908127MaRDI QIDQ1936440
Publication date: 5 February 2013
Published in: Journal of Function Spaces and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1155/2012/153849
Related Items (2)
Besov and Triebel-Lizorkin spaces on metric spaces: embeddings and pointwise multipliers ⋮ Pointwise multipliers on spaces of homogeneous type in the sense of coifman and Weiss
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The \(\overline\partial_b\)-complex on decoupled boundaries in \(\mathbb C^n\)
- Harmonic analysis on spaces of homogeneous type. With a preface by Yves Meyer
- A theory of Besov and Triebel-Lizorkin spaces on metric measure spaces modeled on Carnot-Carathéodory spaces
- Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation. (Calderón-Zygmund operators, para-accretive functions and interpolation)
- Lipschitz functions on spaces of homogeneous type
- Pointwise multipliers from the Hardy space to the Bergman space
- Pointwise multipliers of Besov spaces of smoothness zero and spaces of continuous functions.
- On pointwise multipliers for \(F_{p,q}^s (\mathbb{R}^n)\) in case \(\sigma_{p,q}< s< n/p\)
- Analyse harmonique non-commutative sur certains espaces homogènes. Etude de certaines intégrales singulières. (Non-commutative harmonic analysis on certain homogeneous spaces. Study of certain singular integrals.)
- Littlewood-Paley theory on spaces of homogeneous type and the classical function spaces
- A T(b) theorem with remarks on analytic capacity and the Cauchy integral
- Multiparameter Hardy space theory on Carnot-Carathéodory spaces and product spaces of homogeneous type
- Some Maximal Inequalities
This page was built for publication: Pointwise multipliers of Triebel-Lizorkin spaces on Carnot-Carathéodory spaces