Lyapunov exponents of continuous Schrödinger cocycles over irrational rotations
DOI10.1007/s10231-006-0029-7zbMath1259.37011OpenAlexW1999132492MaRDI QIDQ1944628
Kristian Bjerklöv, David Damanik, Russell A. Johnson
Publication date: 26 March 2013
Published in: Annali di Matematica Pura ed Applicata. Serie Quarta (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10231-006-0029-7
Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics (82B44) Random linear operators (47B80) Nonuniformly hyperbolic systems (Lyapunov exponents, Pesin theory, etc.) (37D25) Topological dynamics of nonautonomous systems (37B55) Jacobi (tridiagonal) operators (matrices) and generalizations (47B36)
Related Items (4)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème d'Arnold et de Moser sur le tore de dimension 2
- Generic singular spectrum for ergodic Schrödinger operators
- Zero-measure Cantor spectrum for Schrödinger operators with low-complexity potentials
- Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients
- Positive Lyapunov exponents for Schrödinger operators with quasi- periodic potentials
- Singular spectrum of Lebesgue measure zero for one-dimensional quasicrystals
- A condition of Boshernitzan and uniform convergence in the multiplicative ergodic theorem
- Uniform ergodic theorems on subshifts over a finite alphabet
- Genericity of zero Lyapunov exponents
- Positive Lyapunov exponent and minimality for a class of one-dimensional quasi-periodic Schrödinger equations
- On nonperturbative localization with quasi-periodic potential.
- On the Lyapounov exponent of certain SL\((2,\mathbb{R})\)-valued cocycles
- Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions
This page was built for publication: Lyapunov exponents of continuous Schrödinger cocycles over irrational rotations