The Brauer-Clifford group for \((S,H)\)-Azumaya algebras over a commutative ring.
From MaRDI portal
Publication:1946634
DOI10.1007/s10468-011-9295-1zbMath1270.16015OpenAlexW2015870042MaRDI QIDQ1946634
Publication date: 15 April 2013
Published in: Algebras and Representation Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10468-011-9295-1
Brauer groupssymmetric monoidal categoriesAzumaya algebrascocommutative Hopf algebrasBrauer-Clifford groups
Separable algebras (e.g., quaternion algebras, Azumaya algebras, etc.) (16H05) Brauer groups (algebraic aspects) (16K50) Hopf algebras and their applications (16T05)
Related Items (9)
Brauer-Clifford group of \((S,\mathcal{G},H)\)-Azumaya algebras ⋮ An anti-isomorphism between Brauer-Clifford-Long groups \(BD (S, H)\) and \(BD(S^{\mathrm{op}},H^*)\) ⋮ Brauer–Clifford group of (S,G,H)-Azumaya comodule algebras ⋮ Unnamed Item ⋮ The Brauer-Clifford group for locally finite (S,H)-Azumaya algebras ⋮ Unnamed Item ⋮ The Brauer group of Azumaya-Poisson \(S\)-algebras ⋮ Brauer-Clifford group of Azumaya-Poisson \((S, H)\)-algebras ⋮ A Brauer-Clifford-long group for the category of dyslectic \((S, H)\)-dimodule algebras
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A Skolem-Noether theorem for coalgebra measurings
- The Brauer-Clifford group.
- Brauer-Clifford equivalence of full matrix algebras.
- A direct sum decomposition for the Brauer group of H-module algebras
- Brauer groups, Hopf algebras and Galois theory
- The Brauer group of dimodule algebras
- Théorie de la descente et algèbres d'Azumaya
- Clifford theory and Galois theory. I.
- Separable algebras over commutative rings
- Equivalence and the Brauer–Clifford Group forG-Algebras over Commutative Rings
- Clifford theory for group-graded rings.
- Equivalent crossed products for a hopf algebra
- Graded Brauer Groups.
- Cohomology of Algebras Over Hopf Algebras
This page was built for publication: The Brauer-Clifford group for \((S,H)\)-Azumaya algebras over a commutative ring.