Fractal and smoothness properties of space-time Gaussian models
From MaRDI portal
Publication:1946959
DOI10.1007/s11464-011-0126-9zbMath1271.62216arXiv0912.0285OpenAlexW1970289954MaRDI QIDQ1946959
Publication date: 10 April 2013
Published in: Frontiers of Mathematics in China (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/0912.0285
prediction errorHausdorff dimensionspace-time modelanisotropic Gaussian fieldmean square differentiabilitysample path differentiability
Random fields (60G60) Inference from spatial processes (62M30) Random fields; image analysis (62M40) Gaussian processes (60G15) Sample path properties (60G17) Fractals (28A80)
Related Items
The mean Euler characteristic and excursion probability of Gaussian random fields with stationary increments, Strong solutions of stochastic differential equations with generalized drift and multidimensional fractional Brownian initial noise, Spectral conditions for equivalence of Gaussian random fields with stationary increments, Regularity properties of the solution to a stochastic heat equation driven by a fractional Gaussian noise on \(\mathbb{S}^2\), Hitting probabilities of a class of Gaussian random fields, Tail estimation of the spectral density for a stationary Gaussian random field, Screening effect in isotropic Gaussian processes, Max-stable processes for modeling extremes observed in space and time, Sample paths of the solution to the fractional-colored stochastic heat equation, Stationary increments harmonizable stable fields: upper estimates on path behaviour, Spectral conditions for strong local nondeterminism and exact Hausdorff measure of ranges of Gaussian random fields, Strong existence and higher order Fréchet differentiability of stochastic flows of fractional Brownian motion driven SDEs with singular drift, 2010 Rietz lecture: When does the screening effect hold?, Generalized dimensions of images of measures under Gaussian processes, Hausdorff measure of the range of space-time anisotropic Gaussian random fields, Sharp space-time regularity of the solution to stochastic heat equation driven by fractional-colored noise, L-Kuramoto-Sivashinsky SPDEs vs. time-fractional SPIDEs: exact continuity and gradient moduli, 1/2-derivative criticality, and laws, Estimators of fractal dimension: assessing the roughness of time series and spatial data, A CLASS OF FRACTIONAL BROWNIAN FIELDS FROM BRANCHING SYSTEMS AND THEIR REGULARITY PROPERTIES, Logistic vector random fields with logistic direct and cross covariances, Gaussian Random Particles with Flexible Hausdorff Dimension
Cites Work
- The linear coregionalization model and the product-sum space-time variogram
- Recent developments on the construction of spatio-temporal covariance models
- Interpolation of spatial data. Some theory for kriging
- Spatio-temporal stationary covariance models
- Families of spatio-temporal stationary covariance models.
- Spatial autoregression and related spatio-temporal models.
- Nonseparable space-time covariance models: Some parametric families
- On smoothness properties of spatial processes
- Estimation of fractal dimension for a class of non-Gaussian stationary processes and fields.
- Estimating deformations of isotropic Gaussian random fields on the plane
- A class of stationary random fields with a simple correlation structure
- A formal test for nonstationarity of spatial stochastic processes
- Properties of Strong Local Nondeterminism and Local Times of Stable Random Fields
- Stationary Random Fields in Space and Time With Rational Spectral Densities
- Fractal Analysis of Surface Roughness by Using Spatial Data
- Nonseparable, Stationary Covariance Functions for Space–Time Data
- Directional Rates of Change Under Spatial Process Models
- Classes of Nonseparable, Spatio-Temporal Stationary Covariance Functions
- Spectral methods for nonstationary spatial processes
- On the performance of box-counting estimators of fractal dimension
- Fernique-type inequalities and moduli of continuity for anisotropic Gaussian random fields
- Matérn Cross-Covariance Functions for Multivariate Random Fields
- Random Fields and Geometry
- Spatio-temporal variograms and covariance models
- Space–Time Covariance Functions
- Space-time analysis using a general product-sum model.
- Geostatistical space-time models: a review
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item