Desarguesian and unitary complete partial ovoids
From MaRDI portal
Publication:1947190
DOI10.1007/s10801-012-0375-zzbMath1275.51002OpenAlexW2142843351MaRDI QIDQ1947190
Publication date: 12 April 2013
Published in: Journal of Algebraic Combinatorics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10801-012-0375-z
Combinatorial aspects of finite geometries (05B25) Combinatorial structures in finite projective spaces (51E20) Polar geometry, symplectic spaces, orthogonal spaces (51A50)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the algebraic variety \(\mathcal V_{r,t}\)
- On twisted tensor product group embeddings and the spin representation of symplectic groups: the case \(q\) odd.
- The non-existence of ovoids in \(O_ \nu (q)\)
- Sur la trialité et certains groupes qui s'en déduisent
- Planar fibrations and an algebraic subvariety of the Grassmann variety
- Partial ovoids and partial spreads in symplectic and orthogonal polar spaces
- Segre variety and ovoids in the polar space \(Q^+(7,q)\)
- New families of ovoids in \(O\) \(+_ 8\)
- Polar spaces, generalized hexagons and perfect codes
- Unital intersections in finite projective planes
- Ovoids and spreads of finite classical polar spaces
- Partitions and their stabilizers for line complexes and quadrics
- Normal spreads
- Spreads and ovoids in finite generalized quadrangles
- Twisted tensor product group embeddings and complete partial ovoids on quadrics in \(\text{PG}(2^{t}-1,q)\).
- Ovoids from the \(E_ 8\) root lattice
- Some \(p\)-ranks related to orthogonal spaces
- Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane
- Forme e geometrie hermitiane, con particolare riguardo al caso finito
- Ovoidal translation planes
- Representations of Algebraic Groups
- Ovoids and Translation Planes
- Spreads, Translation Planes and Kerdock Sets. I
- Hermitian Veroneseans over finite fields
- HEMISYSTEMS ON THE HERMITIAN SURFACE
- On the geometry of Hermitian matrices of order three over finite fields