Branch-and-cut for separable piecewise linear optimization and intersection with semi-continuous constraints
From MaRDI portal
Publication:1947201
DOI10.1007/s12532-012-0049-9zbMath1267.90076OpenAlexW1987888397MaRDI QIDQ1947201
Publication date: 12 April 2013
Published in: Mathematical Programming Computation (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s12532-012-0049-9
90knapsack problembranch-and-cutmixed-integer programmingpiecewise linear optimizationpolyhedral methodspecial ordered setsemi-continuous variable
Mixed integer programming (90C11) Polyhedral combinatorics, branch-and-bound, branch-and-cut (90C57) Combinatorial optimization (90C27)
Related Items (5)
Equivalence of Two Optimality Conditions for Polyhedral Functions ⋮ The piecewise linear optimization polytope: new inequalities and intersection with semi-continuous constraints ⋮ Branch-and-cut for separable piecewise linear optimization and intersection with semi-continuous constraints ⋮ Branch-and-cut for complementarity-constrained optimization ⋮ Mixed Integer Linear Programming Formulation Techniques
Uses Software
Cites Work
- Modeling disjunctive constraints with a logarithmic number of binary variables and constraints
- A special ordered set approach for optimizing a discontinuous separable piecewise linear function
- A polyhedral study of the cardinality constrained knapsack problem
- Models for representing piecewise linear cost functions
- Computational study of a family of mixed-integer quadratic programming problems
- Branch-and-cut for separable piecewise linear optimization and intersection with semi-continuous constraints
- Mixed integer models for the stationary case of gas network optimization
- Branch-and-cut for combinatorial optimization problems without auxiliary binary variables
- Mixed-Integer Models for Nonseparable Piecewise-Linear Optimization: Unifying Framework and Extensions
- On the Solution of Discrete Programming Problems
- On the Significance of Solving Linear Programming Problems with Some Integer Variables
- Large-Scale Portfolio Optimization
- A Branch-and-Cut Algorithm Without Binary Variables for Nonconvex Piecewise Linear Optimization
- Variable Disaggregation in Network Flow Problems with Piecewise Linear Costs
- Solving Large-Scale Zero-One Linear Programming Problems
- Numerical Optimization
- Integer Programming and Combinatorial Optimization
- A generalized assignment problem with special ordered sets: a polyhedral approach.
- Portfolio optimization problem under concave transaction costs and minimal transaction unit constraints
This page was built for publication: Branch-and-cut for separable piecewise linear optimization and intersection with semi-continuous constraints