Equivariant Euler characteristics and sheaf resolvents
From MaRDI portal
Publication:1948157
DOI10.5802/aif.2750zbMath1286.11187arXiv1009.0363OpenAlexW2140067745MaRDI QIDQ1948157
Philippe Cassou-Noguès, Martin J. Taylor
Publication date: 2 May 2013
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1009.0363
Riemann-Roch theorems (14C40) Integral representations related to algebraic numbers; Galois module structure of rings of integers (11R33) Algebraic numbers; rings of algebraic integers (11R04)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Cubic structures, equivariant Euler characteristics and lattices of modular forms
- Galois modules and the theorem of the cube
- On Fröhlich's conjecture for rings of integers of tame extensions
- Hermitian modules in Galois extensions of number fields and Adams operations
- On the self-duality of a ring of integers as a Galois module
- Galois structure of de Rham cohomology of tame covers of schemes
- \(\varepsilon\)-constants and the Galois structure of de Rham cohomology
- Tame actions of group schemes: Integrals and slices
- Galois structure of de Rham cohomology
- Arithmetic and Galois module structure for tame extensions.
This page was built for publication: Equivariant Euler characteristics and sheaf resolvents