Variations of the Ramanujan polynomials and remarks on \(\zeta(2j+1)/\pi^{2j+1}\)
From MaRDI portal
Publication:1948713
DOI10.7169/facm/2013.48.1.8zbMath1272.26007arXiv1106.1189OpenAlexW3146111114MaRDI QIDQ1948713
Matilde N. Lalín, Mathew D. Rogers
Publication date: 24 April 2013
Published in: Functiones et Approximatio. Commentarii Mathematici (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1106.1189
Bernoulli numbersEuler numbersRamanujan polynomialsroots on the unit circlereciprocal polynomialsRiemann zeta function values
Related Items (6)
Ramanujan’s Formula for ζ(2n + 1) ⋮ On a secant Dirichlet series and Eichler integrals of Eisenstein series ⋮ A new Ramanujan-type identity for \(L(2k+1, \chi_1)\) ⋮ Unimodularity of zeros of period polynomials of Hecke eigenforms ⋮ Secant zeta functions ⋮ On the zeros of period functions associated to the Eisenstein series for \(\Gamma_0^+(N)\)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Arithmetic of linear forms involving odd zeta values
- Polynomials with all zeros on the unit circle
- Irrationality of the sums of zeta values
- A proof that Euler missed. Apéry's proof of the irrationality of \(\zeta(3)\). An informal report
- On some inequalities for the Bernoulli numbers
- Sums of products of Bernoulli numbers
- Unimodularity of zeros of self-inversive polynomials
- Transcendental values of certain Eichler integrals
- La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs
- Self-inversive polynomials with all zeros on the unit circle
- Irrationality of infinitely many values of the zeta function at odd integers.
This page was built for publication: Variations of the Ramanujan polynomials and remarks on \(\zeta(2j+1)/\pi^{2j+1}\)