A Gauss-Newton approach for solving constrained optimization problems using differentiable exact penalties
From MaRDI portal
Publication:1949585
DOI10.1007/s10957-012-0114-6zbMath1281.90053OpenAlexW2004274885MaRDI QIDQ1949585
Ellen H. Fukuda, Paulo J. S. Silva, Roberto Andreani
Publication date: 8 May 2013
Published in: Journal of Optimization Theory and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10957-012-0114-6
Related Items (2)
Exact augmented Lagrangian functions for nonlinear semidefinite programming ⋮ A flexible sequential Monte Carlo algorithm for parametric constrained regression
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A feasible descent SQP algorithm for general constrained optimization without strict complemen\-tar\-ity
- Exact penalties for variational inequalities with applications to nonlinear complementarity problems
- A new augmented Lagrangian function for inequality constraints in nonlinear programming problems
- Large-scale PDE-constrained optimization
- A nonsmooth version of Newton's method
- A truncated Newton method in an augmented Lagrangian framework for nonlinear programming
- Augmented Lagrangian methods under the constant positive linear dependence constraint qualification
- Multiplier and gradient methods
- Nonlinear analysis and synthesis techniques for aircraft control.
- An Augmented Lagrangian Function with Improved Exactness Properties
- A multiplier method with automatic limitation of penalty growth
- On Augmented Lagrangian Methods with General Lower-Level Constraints
- A Continuously Differentiable Exact Penalty Function for Nonlinear Programming Problems with Inequality Constraints
- An exact penalty function method with global convergence properties for nonlinear programming problems
- A New Class of Augmented Lagrangians in Nonlinear Programming
- New Results on a Continuously Differentiable Exact Penalty Function
- A quadratically convergent primal-dual algorithm with global convergence properties for solving optimization problems with equality constraints
- Numerical Optimization
- CUTE
- Lagrangian Duality and Related Multiplier Methods for Variational Inequality Problems
- Nonmonotone Spectral Projected Gradient Methods on Convex Sets
- A Nonmonotone Line Search Technique for Newton’s Method
- Exact Penalty Functions in Constrained Optimization
- Modifying SQP for Degenerate Problems
- Finite-Dimensional Variational Inequalities and Complementarity Problems
- Non-Linear Programming Via Penalty Functions
- Benchmarking optimization software with performance profiles.
This page was built for publication: A Gauss-Newton approach for solving constrained optimization problems using differentiable exact penalties