Modular data and Verlinde formulae for fractional level WZW models I

From MaRDI portal
Publication:1950083

DOI10.1016/j.nuclphysb.2012.07.018zbMath1262.81157arXiv1205.6513OpenAlexW2166597665MaRDI QIDQ1950083

Thomas Creutzig, David Ridout

Publication date: 8 May 2013

Published in: Nuclear Physics. B (Search for Journal in Brave)

Full work available at URL: https://arxiv.org/abs/1205.6513




Related Items (49)

Weight representations of admissible affine vertex algebrasAn admissible level \(\widehat{\mathfrak{osp}}(1| 2)\)-model: modular transformations and the Verlinde formulaModularity of logarithmic parafermion vertex algebrasFusion rules for the logarithmicN= 1 superconformal minimal models: I. The Neveu–Schwarz sectorNegative index Jacobi forms and quantum modular formsBraided tensor categories of admissible modules for affine Lie algebrasModularity of Bershadsky-Polyakov minimal modelsRelaxed highest-weight modules. I: Rank 1 casesW-algebras for Argyres-Douglas theoriesCharacters of Modules of Irrational Vertex AlgebrasA Kazhdan-Lusztig correspondence for \(L_{-\frac{3}{2}}(\mathfrak{sl}_3)\)Logarithmic conformal field theory, log-modular tensor categories and modular formsCoset constructions of logarithmic \((1, p)\) modelsHiggs and Coulomb branches from vertex operator algebrasRigid tensor structure on big module categories for some \(W\)-(super)algebras in type \(A\)The worldsheet dual of the symmetric product CFTAdmissible level \(\mathfrak{osp}(1|2)\) minimal models and their relaxed highest weight modulesTensor Categories for Vertex Operator Superalgebra ExtensionsRelaxed singular vectors, Jack symmetric functions and fractional level \(\widehat{\mathfrak{sl}}(2)\) modelsBimodule structure of the mixed tensor product over \(\mathcal{U}_q s \ell(2 | 1)\) and quantum walled Brauer algebraJOSEPH IDEALS AND LISSE MINIMAL -ALGEBRASLine defect Schur indices, Verlinde algebras and \(\mathrm{U}(1)_{r}\) fixed pointsModular data and Verlinde formulae for fractional level WZW models. IICosets, characters and fusion for admissible-level \(\mathfrak{osp}(1 | 2)\) minimal modelsLogarithmic W-algebras and Argyres-Douglas theories at higher rankModular transformations and Verlinde formulae for logarithmic (\(p_+,p_-\))-modelsStaggered modules of \(N = 2\) superconformal minimal modelsFusion categories for affine vertex algebras at admissible levelsArgyres-Douglas theories, chiral algebras and wild Hitchin charactersRepresentations of the Nappi-Witten vertex operator algebraLogarithmic link invariants of \(\overline{U}_q^H(\mathfrak{sl}_2)\) and asymptotic dimensions of singlet vertex algebrasFalse theta functions and the Verlinde formulaBosonic ghosts at \(c=2\) as a logarithmic CFTThe mock modular data of a family of superalgebrasVertex algebraic intertwining operators among generalized Verma modules for affine Lie algebrasRepresentation theory of $L_k(\mathfrak {osp}(1 \vert 2))$ from vertex tensor categories and Jacobi formsFrom VOAs to short star products in SCFTClassifying relaxed highest-weight modules for admissible-level Bershadsky-Polyakov algebrasBoundary algebras and Kac modules for logarithmic minimal modelsSimple current extensions beyond semi-simplicitySchur-Weyl duality for Heisenberg cosetsUnitary and non-unitary \(N=2\) minimal modelsStrings on $\mathrm{AdS}_3 \times S^3 \times S^3 \times S^1$Braided tensor categories related to \(\mathcal{B}_p\) vertex algebrasSuperconformal surfaces in four dimensionsAdmissible-level \(\mathfrak{sl}_3\) minimal modelsRelaxed highest-weight modules II: Classifications for affine vertex algebrasBosonic ghostbusting: the bosonic ghost vertex algebra admits a logarithmic module category with rigid fusionFusion rules for the logarithmic \(N\)=1 superconformal minimal models. II: Including the Ramond sector



Cites Work


This page was built for publication: Modular data and Verlinde formulae for fractional level WZW models I