Asymptotic theorems for kernel U-quantiles
From MaRDI portal
Publication:1950833
DOI10.1214/12-EJS687zbMath1276.62028MaRDI QIDQ1950833
Publication date: 28 May 2013
Published in: Electronic Journal of Statistics (Search for Journal in Brave)
Full work available at URL: https://projecteuclid.org/euclid.ejs/1334754010
Density estimation (62G07) Asymptotic properties of nonparametric inference (62G20) Order statistics; empirical distribution functions (62G30) Strong limit theorems (60F15) Functional limit theorems; invariance principles (60F17)
Cites Work
- Unnamed Item
- Bahadur representation for \(U\)-quantiles of dependent data
- Relative deficiency of kernel type estimators of quantiles
- Generalized L-, M-, and R-statistics
- Asymptotic normality of the kernel quantile estimator
- The almost sure invariance principle for the empirical process of U- statistic structure
- A kernel-type estimator for generalized quantiles
- Generalized order statistics, Bahadur representations, and sequential nonparametric fixed-width confidence intervals
- The Bahadur-Kiefer representation for \(U\)-quantiles
- Strong approximation theorems for integrated kernel quantiles
- Kernel Quantile Estimators
- A Smooth Nonparametric Estimator of a Quantile Function
- Nonparametric Statistical Data Modeling
- Weak Convergence of $U$-Statistics and Von Mises' Differentiable Statistical Functions